Article 8414

Title of the article

POLARON DYNAMICS ON THE LATTICE WITH CUBIC NONLINEARITY. ACCURATE SOLUTION AND MULTIPEAKED POLARONS

Authors

Astakhova Tat'yana Yur'evna, Candidate of physical and mathematical sciences, senior staff scientist, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (4 Kosygina street, Moscow, Russia), gvin@deom.chph.ras.ru
Kashin Vladimir Aleksandrovich, Candidate of physical and mathematical sciences, senior staff scientist, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (4 Kosygina street, Moscow, Russia), gvin@deom.chph.ras.ru
Likhachev Vladimir Nikolaevich, Candidate of physical and mathematical sciences, associate professor, senior staff scientist, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (4 Kosygina street, Moscow, Russia), gvin@deom.chph.ras.ru
Vinogradov Georgiy Alekseevich, Doctor of chemical sciences, head of laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (4 Kosygina street, Moscow, Russia), gvin@deom.chph.ras.ru

Index UDK

538.93

Abstract

Background. The feasible mechanism of charge transfer in quasi-one-dimensional systems is examined. Special interest to this problem emerged after the experimental discovery that the charge can travel dozens nanometers through the DNA chain with very high efficiency. It was found additionally that the charge transfer probability weakly depends on the lattice length and, moreover, occurs as a single-step coherent process. These properties open the possibilities for the usage of these and analogous systems as nanosized electroactive devices. The primary goal of the present paper is the theoretical and numerical feasibility study of the charge transfer in onedimensional systems, representing the simplified DNA model, by means of polarons.
Materials and methods. The discrete model of one-dimensional classical oscillators with the cubic nonlinearity is utilized for the studying the problem, aimed at the elucidating the polaron mechanism of the charge transfer. The electron-phonon interaction is accounted in terms of the Su-Schriffer-Heeger (SSH) approximation. The referenced discrete model is reduced to two coupled nonlinear partial differential equations. One describes classical dynamical degrees of freedom. The other is the time-dependent Schrodinger equation for the electron wave function. The soliton-type solutions are derived at the definite relation between the model parameters
(nonlinearity parameter α and the electron-phonon interaction χ). The numerical modeling shows the very high stability (polarons travel thousandth lattice sites without substantial changes in shape and amplitude). New polaron types with the envelope consisting of few (from 2 to 5) peaks are found in numerical simulation at arger parameter values. These properties are manifested for supersonic polarons with large amplitudes. The peaks existence is explained by the fact that the dynamically polaron is comprised by few solitons held together by the electron-phonon interaction. Multipeaked polarons are also very stable.
Results. The polaronic charge transfer mechanism is analyzed. The onedimensional lattice model is used. The employed model describes the lattice dynamics classically. An accounting of the cubic nonlinearity in the neighboring particles interaction, allows to make the model more adequate with regard to original complex biological systems. Additionally, new qualitative properties are revealed. One is the existence of solitons and the role they are playing in the charge transfer. The wave function is reported in the adiabatic approximation, and the electron-phonon interaction is accounted in terms of the SSH approximation. Analytical solutions are derived for polarons on the nonlinear lattice. The solution shape (amplitude, width) is soliton-like and is governed by a single free parameter. Stable polarons with the envelope consisting of few peaks are found in numerical modelling.
Conclusions. It has been established that polarons on the lattice with the cubic nonlinearity are very stable and can participate in the charge and energy transfer in DNA and polypeptides. New types of multypeaked polarons are found. The dynamics is interpreted as the coupled state of few solitons hold together by the ekectronphonon interaction.

Key words

quasi-one-dimensional systems, charge transfer, polarons, DNA chain, one-dimensional lattice model.

Download PDF
References

1. Su W. P., Schrieffer J. R. and Heeger A. J. Physical Review Letters. 1979, vol. 42, p. 1698.
2. Su W. P., Schrieffer J. R. and Heeger A. J. Physical Review B. 1980, vol. 22, p. 2099.
3. Takayama H., Lin-Liu Y. R. and Maki K. Physical Review B. 1980, vol. 21, p. 3288.
4. Campbell D. K. and Bishop A. R. Nuclear Physics B. 1982, vol. 200 [FS4], p. 297.
5. Genereux J. C. and Barton J. K. Chemical Reviews. – 2010. – Vol.110. – P.1642.
6. Genereux J. C., Wuerth S. M. and Barton J. K. Journal American Chemical Society. 2011, vol. 133, p. 3863.
7. Arikuma Y., Nakayama H., Morita T. and Kimura S. Angewandte Chemie International Edition. 2010, vol. 49, p. 1800.
8. Augustyn K. E., Genereux J. C. and Barton J. K. Angewandte Chemie International Edition. 2007, vol. 46, p. 5731.
9. Barton J. K., Olmon E. D. and Sontz P. A. Coordination Chemistry Reviews. 2011, vol. 255, p. 619.
10. Slinker J. D., Muren N. B., Renfrew S. E. and Barton J. K. Nature Chemistry. 2011, vol. 3, p. 228.
11. Henderson P. T., Jones D., Hampikian G., Kan Y. and Schuster G. B. Proceedings National Academy Sciences USA. 1999, vol. 96, p. 8353.
12. Nun e z M., Hall D. B. and Barton J. K. Chemistry and Biology. 1999, vol. 6, p. 85.
13. Cordes M., and Giese B. Chemical Society Reviews. 2009, vol. 38, p. 892.
14. Astakhova T. Yu., Likhachev V. N. and Vinogradov G. A. Russian Chemical Reviews. 2012, vol. 81, p. 994.
15. Lakhno V. D. International Journal Quantum Chemistry. 2010, vol. 110, p. 127.
16. Conwell E. M. and Rakhmanova S. V. Proceedings National Academy Sciences USA. 2000, vol. 97, p. 4556.
17. Rakhmanova S. V. and Conwell E. M. Journal Physical Chemistry B. 2001, vol. 105, p. 2056.
18. Conwell E. M. and Basko D. M. Journal American Chemical Society. 2001, vol. 123, p. 11441.
19. Conwell E. M., Park J.-H. and Choi H.-Y. Journal Physical Chemistry B. 2005, vol. 109, p. 9760.
20. Conwell E. M., McLaughlin P. M. and Bloch S. M. Journal Physical Chemistry B. 2008, vol. 112, p. 2268.
21. Zhang G., Hu H., Cui S. and Lv Z. Physica B. 2010, vol. 405, p. 4382.
22. Guiqing Zhang, Peng Cui, Jian Wu and Chengbu Liu Physica B. 2009, vol. 404, p. 1485.
23. Wei J. H., Liu X. J., Berakdar J. and Yi Jing Yan. Journal Chemical Physics. 2008, vol. 128, p. 165101.
24. Carstea A. S. Chaos, Solitons and Fractals. 2009, vol. 42, p. 923.
25. Li L., Li E. and Wang M. Applied Mathematics Journal Chinese Universities. 2010, vol. 25, p. 454.
26. Astakhova T. Yu., Likhachev V. N. and VinigradovG.A.Russian Journal Physical ChemistryB. 2013,vol.7,p.521.
27. Zekovic S., Zdravkovic S. and Ivic Z. Journal of Physics: Conference Series. 2011, vol. 329, p. 012015.
28. Hawke L. G. D., Kalosakas G. and Simserides C. European Physical Journal E. 2010, vol. 32, p. 291.
29. S. Komineas, G. Kalosakas, and A. R. Bishop Physical Review E. 2002, vol. 65, p. 061905.
30. Dubrovin B. A., Malanuyk T. M., Krichever I. M. and Makhan'kov V. G. Physics of Elementary Particles and Atomic Nuclei. 1988, vol. 19, p. 579. (in Russian).
31. Dauxious T. and Peyrard M. Physics of Solitons. Cambridge University Press, United Kingdom, 2006.
32. Kalosakas G. Physica D. 2006, vol. 216, p. 44.
33. Fuentes M. A., Maniadis P., Kalosakas G., Rasmussen K. Ø., Bishop A. R., Kenkre V. M. and Gaididei Yu. B. Physical Review E. 2004, vol. 70, p. 025601(R).
34. Velarde M.G. Journal Computational and Applied Mathematics. 2010, vol. 233, p. 1432.
35. Cantu Ros O. G., Cruzeiro L., Velarde M. G. and Ebeling W.European Physical Journal B.2011,vol.80,p.545.

 

Дата создания: 17.03.2015 15:08
Дата обновления: 26.03.2015 14:43